
Pareto Efficiency
(also called Pareto Optimality)

1 Definitions and notation

Recall some of our definitions and notation for preference orderings. Let X be a set (the set of

alternatives); we have the following definitions:

1. A relation R on X is a subset of X ×X. We often write xRy instead of (x, y) ∈ R and we

say “x is R-related to y”.

2. If R is a relation on X, we denote the complement of R by R/ (instead of ∼ R, because ∼
will be given another meaning). Thus, xR/y means that x is not R-related to y: (x, y) 6∈ R.

3. A strict preordering of X is a transitive and irreflexive relation P on X. We usually write

x � y for xPy, and also y ≺ x. We say that x is “preferred” to y. A weak preordering

of X is a transitive and reflexive relation on X, and a complete preordering of X is a

transitive and complete relation on X. For either one, we usually write x % y and say that

x is weakly preferred to y.

4. If P is a strict preordering, we denote the corresponding indifference relation by I, defined

by xIy ⇐⇒ [xP/y & yP/x]. We also write x ∼ y for xIy, and x % y (also y - x) for

[xPy or xIy]. Note that ∼ is both reflexive and symmetric, but it need not be transitive;

and that % is complete, but it need not be transitive. (Can you provide a counterexample

to show that transitivity may fail?) If ∼ is transitive , then % is a complete preordering.

5. If % is a complete preordering, then ∼ is transitive, and [x % y & y � z] implies x � z for

any x, y, z ∈ X.

2 Aggregation of rankings into a single ranking

Let X be a set of alternatives, generically denoted by x; let N be a set of n individuals, gener-

ically denoted by i; and let P be a set of admissible preorderings (“rankings,” or “preferences”)

over X, generically denoted by P . For any list P = (P1, ..., Pn) ∈ Pn of individual rankings we

would like to have a single P that “summarizes” or represents P — for example, a single P that

could be used as the criterion for making decisions that take account of P1, ..., Pn. What we want,

then, is an “aggregation rule” or function

a : Pn −→ P , i.e., (P1, ..., Pn)
a7−→ P. (1)



We want to have a rule we can use to aggregate a list P = (P1, ..., Pn) of individual rankings into

a single “aggregate” ranking, P. In other words, we want to have an aggregation function or rule

a : Pn −→ P , i.e., (P1, ..., Pn)
a7−→ P. (2)

(Note the similarity with the notation for the sample mean of a list of n numbers: x = 1
n

∑
i xi.

The sample mean is a way of aggregating a list of numbers into a single “representative” number

— i.e., it’s a function that maps a list of numbers into a single number).

Instead of framing the problem as one of aggregating a list of rankings into a single ranking, we

could alternatively frame the problem as one of aggregating a list of utility functions into a single

utility function. We will return to this idea in Section 7.

2.1 Examples

Here are several examples of sets X of alternatives for which we might wish to aggregate a list of

individual rankings into a “representative” ranking:

1. X is a set of allocations x = (x1, ...,xn) ∈ Rnl
+ .

2. X is a set of candidates for a job, or for a political position.

3. X is a set of public policies.

4. X is a set of teams; for example, X = {A,B,C} , A : Arizona, B : Boston College, C :

California.

5. X is a set of tennis players; for example, X = {A,B,C} , A : Agassi, B : Becker, C : Chang.

In this last example the n individual rankings P1, ..., Pn could be the rankings (i.e., the order of

finish) in each of n tournaments, and the problem is to aggregate these tournament results into a

single ranking of the players. This is exactly what the “ATP Ranking” is, an aggregation of the

players’ tournament finishes during the preceding year into a single ranking of the players. The

ATP ranking uses a specific rule (function, algorithm) a : (P1, ..., Pn) −→ P̄ to calculate P̄ . The

ATP rule weights the various tournaments differently, assigning more weight for example to the

so-called Grand Slam tournaments than to other tournaments. (ATP is the abbreviation used by

the Association of Tennis Professionals.)
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3 The Pareto ranking

Definition: Let P = (P1, ..., Pn) be a list of preorderings of a set X of alternatives. We say that

x̃ is a Pareto improvement upon x (which we write x̃Px), or that x̃ Pareto dominates x, if

∀i : xP/ix̃ and ∃i : x̃Pix. P is called the Pareto ranking or Pareto ordering associated with

the list P = (P1, ..., Pn)

Remark: As above, the alternatives (the elements of X) needn’t be allocations — they could be

political parties, candidates, athletic teams, etc. — and the function (P1, ..., Pn) 7−→ P is only

one of many possible ways to aggregate the list (P1, ..., Pn) of rankings into a single “aggregate

ranking” P.

Remark: If each Pi is transitive or irreflexive, then so is P. But even if each Ii is transitive,

and each Pi is transitive and irreflexive, I may fail to be transitive, as Examples 2 and 3 below

demonstrate, or I may be transitive but uninformative, as Example 1 demonstrates.

In Examples 1 and 2, below, the set of alternatives is X = {A,B,C}. Here are two possible

interpretations of the examples:

A is Arizona, B is Boston College, C is California. Each Pi could be an individual’s

ranking of these universities’ basketball teams, or their economics departments, or their

reputations as party schools, etc.

A is Agassi, B is Becker, C is Chang. Each Pi is their order of finish in a tournament.

Example 1: X = {A,B,C} ;A �1 B �1 C;B �2 C �2 A;C �3 A �3 B. Therefore AIB, BIC,

and CIA. Thus, the aggregate indifference relation I is transitive, but not very useful.

Example 2: X = {A,B,C} ;A �1 C �1 B;B �2 A �2 C. Therefore A ∼ B,B ∼ C, and A � C.

Thus, the aggregate indifference relation I (or ∼) is not transitive.

Example 3: Figure 1 is an Edgeworth box with two consumers, each with a standard preference.

Nevertheless, the rankings of the allocations A, B, and C are just as in Example 2: A �1 C �1 B

and B �2 A �2 C, so that the Pareto ranking is also the same as in Example 2: A ∼ B,B ∼ C,

and A � C.
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4 Pareto Efficiency

Definition: Let X be a set of alternatives, and let (%i)n1 be a list of preferences over X. An

alternative x̂ is Pareto efficient if no alternative in X Pareto dominates x̂.

We often have a “fundamental” set X of alternatives — for example, all the conceivable or well

defined alternatives — but only a subset F j X of the alternatives are actually possible, or

feasible. Moreover, we generally want to allow the set F to vary and to see how the Pareto

efficient alternatives depend on the set F . Our standard allocation problem is a good example

of this: we take X = Rnl
+ to be the set of all conceivable allocations, and this is the set over

which individuals’ preferences %i are defined; but in order to say whether a given allocation (xi)n1

is efficient we don’t want to insist that it not be dominated by any conceivable allocation, only

that it not be dominated by any other feasible allocation — i.e., by any other allocation that can

actually be achieved with existing resources.

Definition: Let (%i)n1 be a list of preferences over a set X, and let F j X. An alternative x ∈ F
is Pareto efficient (with respect to F) if it is not Pareto dominated by any other alternative

x̃ ∈ F .

5 Characterizing Pareto efficient allocations

The definition of Pareto efficiency is pretty awkward and clumsy to work with analytically. We’d

like to be able to characterize the efficient alternatives in some way that’s more analytically

tractable or more economically intuitive — for example, as the solution to an optimization prob-

lem, or in terms of marginal rates of substitution. For our economic allocation problem we can

actually establish such a characterization.
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So far, with the exception of Example 3 above, we’ve been dealing with alternatives in the abstract:

the alternatives could be just about anything. Defined at this level of generality, the idea of Pareto

efficiency can be applied in many useful contexts. But for the economic allocation problem we’re

studying, the alternatives we want to compare are alternative allocations; moveover, when we’re

dealing with allocations, the individual preferences are typically representable by utility functions.

With the structure provided by Euclidean space (where the allocations live) and by using functions

instead of orderings, it’s pretty easy to characterize the Pareto efficient allocations as the solutions

to a constrained maximization problem. We’ll tackle that first. And then, since we already know

how to characterize the solutions of a constrained maximization problem in terms of first-order

conditions, we’ll have solved the problem of characterizing the Pareto efficient allocations (or simply

the Pareto allocations) by first-order conditions. Then we’ll find that it’s pretty straightforward

to translate the first-order conditions into a set of economic marginal conditions — thus giving us

a characterization of the Pareto allocations in terms of marginal conditions.

Let’s begin by taking an allocation x̂ = (x̂i)n1 that’s Pareto efficient and we’ll show that because x̂

is a Pareto allocation it must be a solution to a specific constrained maximization problem. The

constraints are of course the usual resource constraints, to which we add the requirement that any

alternative allocation x must make n − 1 of the consumers no worse off than they would have

been at x̂. Then, since x̂ is Pareto efficient, it must be providing the remaining consumer with the

greatest utility possible among all these alternatives x. Note that since x̂ is given, each ui(x̂i) in

the following proposition is just a real number. Throughout this section we’re assuming that the

preferences are representable by utility functions.

Proposition: If the allocation x̂ is Pareto efficient for the endowment bundle x̊ ∈ Rl
++ and the

utility functions u1, . . . un then x̂ is a solution of the following maximization problem:

max
(xik)∈R

nl
+

u1(x1)

subject to xik = 0, i = 1, ..., n, k = 1, ..., l
n∑
i=1

xik 5 x̊k, k = 1, ..., l

ui(xi) = ui(x̂i), i = 2, ..., n.

(P-Max)

Proof: Suppose (x̂i)n1 is not a solution of (P-Max) — i.e., there exist x̃1, ..., x̃n ∈ Rl
+ for which

n∑
i=1

x̃ik 5 x̊k, k = 1, ..., l

ui(x̃i) = ui(x̂i) i = 2, ..., n

u1(x̃1) > u1(x̂1).

Then (x̃i)n1 is clearly a Pareto improvement on (x̂i)n1 ; i.e., (x̂i)n1 is not Pareto efficient. �
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A striking feature of this proposition is that it requires no assumptions about the consumers’ utility

functions. They needn’t be convex, or continuous, or even increasing. And the same proof can be

used even if the utility functions aren’t selfish — i.e., even if some of the consumers care about

others’ consumption levels.

In order to have a characterization of the Pareto efficient allocations, we have to establish the

converse of the proposition we’ve just established: we have to show that any solution of (P-Max)

is Pareto efficient. In fact, the converse isn’t actually true under such general conditions. But if

the consumers’ utility functions are all continuous and strictly increasing, that’s enough to ensure

that the converse is true.

Proposition: If every ui is continuous and strictly increasing, and if the allocation x̂ is a solution

of the problem (P-Max), then x̂ is Pareto efficient for x̊ and the utility functions u1, . . . un.

Proof: Suppose (x̂i)n1 is not Pareto efficient; we will show that then (x̂i)n1 is not a solution of

(P-Max). Since (x̂i)n1 is not Pareto efficient, there exists a Pareto improvement upon (x̂i)n1 , let’s

say (x̃i)n1 :
n∑
i=1

x̃ik 5 x̊k, k = 1, ..., l

ui(x̃i) = ui(x̂i) i = 1, ..., n

ui(x̃i) > ui(x̂i) for some i.

If u1(x̃1) > u1(x̂1), then (x̂i)n1 is not a solution of (P-Max), and the proof is complete. So assume

that u1(x̃1) = u1(x̂1) and (wlog) u2(x̃2) > u2(x̂2).

Since u2 is continuous, we may choose ε > 0 small enough that every x2 ∈ Bε(x̃
2) ∩ Rl

+ satisfies

u2(x2) > u2(x̂2). And since u2(x̃2) > u2(x̂2) and u2 is strictly increasing, there is some K for

which x̃2
K > x̂2

K . Define a new bundle x2 by x2
K = x̃2

K − 1
2
ε and x2

k = x̃2
k for k 6= K. Then

x2 ∈ Bε(x̃
2) ∩ Rl

+, so u2(x2) > u2(x̂2). Define a new bundle x1 by x1 = x̃1 + x̃2 − x2. And for

i = 3, . . . , n, let xi = x̃i.

Now we have x1 + x2 = (x̃1 + x̃2 − x2) + x2 = x̃1 + x̃2, so that
n∑
i=1

xi =
n∑
i=1

x̃i 5 x̊. We also have

ui(xi) = ui(x̂i), i = 2, ..., n and u1(x1) > u1(x̂1). Therefore (x̂i)n1 is not a solution of (P-max). �

Combining the two propositions we’ve just established gives us the following theorem.

Theorem: If every ui is continuous and strictly increasing, then an allocation x̂ is Pareto efficient

for x̊ and the utility functions u1, . . . un if and only if it is a solution of the problem (P-max).

It’s important to note that while the problem (P-max) as well as the theorem and the two propo-

sitions are all stated in terms of maximizing u1, the theorem and the propositions are actually true
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if we restate (P-max) using any one of the n utility functions ui as the maximand and of course use

the remaining n−1 utility functions in the constraints. We can see this in either of two ways: each

proof can obviously be altered in accordance with the change in the statement of the maximization

problem; or we could simply re-index the n individuals in the economy so that the utility function

to be maximized becomes u1, and then the original maximization problem becomes the relevant

one.

For interior allocations, we can weaken the requirement that utility functions be strictly increasing,

requiring only that they be locally nonsatiated.

Definition: A preference � on a set X j Rl is locally nonsatiated (LNS) if for any x ∈ X and

any neighborhood N of x, there is an x̃ ∈ N that satisfies x̃ � x.

Note: We would therefore say that a utility function u on a set X j Rl is locally nonsatiated if

for any x ∈ X and any neighborhood N of x, there is an x̃ ∈ N that satisfies u(x̃) > u(x).

Theorem: If every ui is continuous and locally nonsatiated, then an interior allocation x̂ is

Pareto efficient for x̊ and the utility functions u1, . . . un if and only if it is a solution of the problem

(P-max).

Proof: We alter the proof given above, for strictly increasing utility functions, by choosing ε

small enough that, in addition to having Bε(x̃
2) in the strict upper-contour set of x̂2 we also have

both Bε(x̃
1) ⊂ Rl

+ and Bε(x̃
2) ⊂ Rl

+. Because u1 is LNS there is a bundle x1 ∈ Bε(x̃
1) ∩ Rl

+

for which u1(x1) > u1(x̂1). Define x2 by x2 = x̃2 − (x1 − x̃1). Then the remainder of the proof

proceeds as in the proof for the strictly increasing case. �

Exercise: Provide a counterexample to show why, for interior allocations, this theorem requires

that utility functions be locally nonsatiated, and also a counterexample to show why, at a boundary

allocation, local nonsatiation is not enough.

6 Calculus characterization of Pareto efficiency: marginal conditions

Now that we’ve characterized Pareto efficient allocations as solutions to a constrained maximization

problem, it should be straightforward to use that maximization problem to characterize the Pareto

allocations in terms of first-order conditions, and then to re-cast the first-order conditions as

economic marginal conditions. First-order conditions are calculus conditions, and they require

some convexity — i.e., second-order conditions — so throughout this section we assume that each

consumer’s utility function ui is continuously differentiable and quasiconcave. To simplify notation

we write uik for the partial derivative ∂ui

∂xik
. We also assume that each ui is strictly increasing:
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uik(x
i) > 0 for all i and k. Thus, only those allocations that fully allocate all the goods —

those that satisfy
∑n

1 xi =
∑n

1 x̊i — could be Pareto allocations. You should be able to verify

that under these assumptions the Kuhn-Tucker Theorem’s second-order conditions and constraint

qualification are satisfied, so that the KT first-order conditions are necessary and sufficient for an

allocation (x̂i)n1 to be a solution of (P-max).

6.1 Interior Allocations

In the previous section we established that an allocation is Pareto efficient if and only if it is

a solution of the constrained maximization problem (P-max). Let’s assign Lagrange multipliers

σ1, ..., σl to the l resource constraints in problem (P-max) and multipliers λ2, ..., λn to the n − 1

utility-level constraints ui(xi) = ui(x̂i), i = 2, ..., n. If all the x̂ik’s are strictly positive — i.e., if

(x̂i)n1 is an “interior allocation” — then the first-order marginal conditions for (x̂i)n1 to be a solution

of (P-max) are all equations:

∃λ2, ..., λn = 0 and σ1, ..., σl = 0 such that for each k = 1, ..., l:

u1k = σk and 0 = σk − λiuik, i = 2, ..., n (FOMC)

We can rewrite the last n − 1 equations as λiu
i
k = σk(i = 2, ..., n; k = 1, ..., l). We also have

σk > 0 for each k and λi > 0 for each i = 2, ..., n (you should be able to show why this is so;

recall that the value of a constraint’s Lagrange multiplier is the constraint’s shadow value — the

marginal increase in the objective value achievable by a one-unit relaxation of the constraint’s

right-hand-side). Therefore, for every consumer i and every pair of goods k and k′, we have

uik
uik′

=
σk
σk′

, i.e. MRSikk′ =
σk
σk′

.

That last equation says that each consumer’s MRSkk′ between any two goods k and k′ is equal

to the relative shadow values of those two goods in the maximization problem (P-max). Clearly

then, for any pair of goods every consumer must have the same MRS:

MRS1
kk′ = ... = MRSikk′ = ... = MRSnkk′ . (EqualMRS)

We’ve derived the equality of MRS’s in (EqualMRS) from the Kuhn-Tucker first-order conditions

for (x̂i)n1 to be a solution of (P-max). Therefore (EqualMRS) is a necessary condition for (x̂i)n1

to be a Pareto allocation.

In order to show that (EqualMRS) is also a sufficient condition for Pareto efficiency we need to

determine values of the Lagrange multipliers σk and λi for which the equations (FOMC) all hold
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when the derivatives uik are evaluated at x̂. Thus,

for each k, let σk = u1k(x̂
1), and for each i, let λi =

σl
uil(x̂

i)
.

For each k and each i we have σk > 0 and λi > 0 and therefore, since the equations (EqualMRS)

are satisfied at (x̂i)n1 , we have
uik
uil

=
u1k
u1l

=
σk
σl
,

which yields

σk =
σl
uil
uik = λiu

i
k,

which are exactly the first-order marginal conditions (FOMC) for (x̂i)n1 to be a solution of (P-max).

We have succeeded in characterizing the interior solutions of (P-max) as the allocations that

satisfy the condition (EqualMRS). In the preceding section we characterized the interior Pareto

allocations as the solutions to (P-max). Therefore we have the following characterization of the

Pareto allocations in terms of marginal conditions:

Theorem: If every ui is strictly increasing, quasiconcave, and differentiable, then an interior

allocation x̂ is Pareto efficient for x̊ and the utility functions u1, . . . un if and only if it satisfies

(EqualMRS) and
∑n

1 x̂i =
∑n

1 x̊i.

6.2 Boundary Allocations

Typically many of the Pareto allocations are boundary allocations: some consumers’ bundles

don’t include positive amounts of all the goods. We want our marginal conditions to tell us which

boundary allocations are Pareto efficient and which aren’t, in the same way as the conditions

we’ve just developed do for interior allocations. Since we’re dealing with continuous and strictly

increasing utility functions, we know that a boundary allocation, just like an interior allocation, is

Pareto efficient if and only if it’s a solution of (P-max). So all we need to do is adapt the first-order

conditions (FOMC) to cover boundary allocations: we have to allow for the equations in (FOMC)

to be inequalities when they’re associated with variables that have the value zero. Thus, we have

∃λ1, ..., λn = 0 and σ1, ..., σl = 0 such that for each k = 1, ..., l and each i = 1, ..., n:

λiu
i
k 5 σk, and λiu

i
k = σk if xik > 0 (FOMC)

Of course these inequalities don’t yield the nice equality of all consumers’ MRS’s for any pair

of goods that we obtained in (EqualMRS) for interior allocations. Let’s see how these first-order

inequalities translate into marginal conditions, for any pair of goods and for any pair of consumers.
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Without loss of generality, we consider the two goods k = 1, 2. For each consumer (and omitting

superscripts for the moment), (FOMC) yields

If x1 > 0, then
u1
u2
=
σ1
σ2

; i.e., MRS =
σ1
σ2
. (3)

If x2 > 0, then
u1
u2
5
σ1
σ2

; i.e., MRS 5
σ1
σ2
. (4)

Combining (2) and (3) for any two consumers (wlog, let’s say they’re i = 1, 2), we have the

following two MRS conditions that must be satisfied at a Pareto efficient allocation:

(A) If x11 > 0 and x22 > 0, then MRS1 =MRS2.

(B) If x12 > 0 and x21 > 0, then MRS1 5MRS2.

Together, these two conditions cover every combination of positive and zero values of these two

goods in the bundles assigned to consumers i = 1, 2, as the following table describes. Note that

all interior allocations are Case (1) in the table — i.e., the case in which both (A) and (B) above

apply, so that we have MRS1 = MRS2. All the other eight cases in the table are boundary

allocations.

And it’s always useful to remember that a consumer’s MRS at a bundle is the “personal value”

one of the goods has to him, measured in terms of another good, i.e., it tells us how much of the

other good the consumer would be willing to give up to get a marginal increase in the good in

question. This is extremely useful in trying to find Pareto improvements, and in seeing when no

Pareto improvements are possible.
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Table 1

x11 x12 x21 x22 Required Relation between MRS’s Cases

(1) + + + + MRS1 = MRS2 (A) & (B)

(2) 0 + + + MRS1 5MRS2 (B)

(3) + + 0 + MRS1 =MRS2 (A)

(4) + 0 + + MRS1 =MRS2 (A)

(5) + + + 0 MRS1 5MRS2 (B)

(6) 0 + + 0 MRS1 5MRS2 (B)

(7) + 0 0 + MRS1 =MRS2 (A)

(8) 0 0 + + − -

(9) + + 0 0 − -
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7 Maximizing a Social Welfare Function

An alternative approach for making welfare comparisons of alternative allocations is to evaluate

the allocations according to a “social welfare function.” We could in principle use any real-valued

function W defined on the space Rnl
+ of allocations (xi)n1 . Of course, we would want to use a

function that somehow reflects the preferences of the n consumers, so we’ll define a social welfare

function as any weighted sum of the consumers’ utilities.

Definition: A social welfare function for the economy (ui, x̊i)n1 is a function of the form

W (x) =
∑n

i=1 αiu
i(xi) for some numbers (weights) α1, ..., αn > 0.

This may seem to be an ill-advised approach, because the social welfare function W adds up

individual utilities that aren’t really comparable: the consumers’ utility functions have no cardinal

meaning, because the underlying preferences can be represented by any monotone transforms of

the given utility functions. But let’s nevertheless see what the implications of using a social

welfare function would be. Note that the map taking profiles of utility functions to a social welfare

function, (u1, ..., un) 7→ W (·), is a particular way of aggregating profiles of utility functions into an

“aggregate” utility function, as promised in Section 2. In keeping with our notation for aggregating

preference relations, it would be natural to denote the social welfare function as ū(·); we use W (·)
instead, because that’s the conventional notation for a social welfare function.

The first thing we see is that any allocation that maximizes a social welfare function is Pareto

efficient:

Theorem: If an allocation x̂ ∈ Rnl
+ is a solution of the problem

max
(xik)∈R

nl
+

W (x) =
∑n

i=1 αiu
i(xi)

subject to xik = 0, i = 1, ..., n, k = 1, ..., l
n∑
i=1

xik 5 x̊k, k = 1, ..., l

(W-Max)

for some numbers α1, ..., αn > 0, then x̂ is a Pareto allocation for x̊ and the utility functions

u1, . . . un.

In fact, this result is much more general. It holds not just for our economic allocation problem,

but for any situation in which we want to aggregate individual preferences into a single aggregate

preference and in which the individual preferences can each be represented by a utility function. As

the proof below makes clear, the result follows immediately from the definition of Pareto efficiency.

As in the definition, the set X of alternatives here can be any set whatsoever.
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Theorem: If the alternative x̂ is a solution of the problem

max
x∈X

W (x) =
∑n

i=1 αiu
i(x), (5)

for some numbers α1, ..., αn > 0, then x̂ is Pareto efficient in X.

Proof. Suppose x̂ is not Pareto efficient in X: let x̃ satisfy

∀i ∈ N : ui(x̃) ≥ ui(x̂) and ∃j ∈ N : uj(x̃) > uj(x̂). (6)

Then for any α1, ..., αn > 0 we have ∑
i∈N

αiui(x̃) >
∑
i∈N

αiui(x̂) (7)

— i.e., there are no values of the αi for which x̂ maximizes W (·) on X, contrary to assumption.

What about the converse? For any Pareto allocation x̂, can we always find weights α1, ..., αn for

which x̂ maximizes the social welfare function max
(xik)∈R

nl
+

W (x) =
∑n

i=1 αiu
i(xi) ? The answer is no;

the following exercise asks you to construct a counterexample.

Exercise: In a two-person, two-good exchange economy, assume that uA(xA, yA) = xAyA and that

uB(xB, yB) = xByB and that the total resources are x̊ and ẙ. Depict the set of Pareto allocations

in the Edgeworth box. Then show that if α = β there are exactly two allocations that maximize

the social welfare function W (xA, yA, xB, yB) = αuA(xA, yA) + βuB(xB, yB). Use this result, along

with the corresponding result for α 6= β, to establish that this example is indeed a counterexample

to the converse of the above theorem.

Suggestion: Write r for the ratio ẙ/x̊ and show that Pareto efficiency and maximization of W

each require that yi = rxi for i = A,B. This allows you to express uA, uB, and W in terms of just

xA and xB, and now you can draw the constraint and the contours of W in the two-dimensional

xAxB-space and easily establish the conclusion both geometrically and algebraically. Do it first for

the case α = β, where there are two (and only two) allocations that maximize W .
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